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,e analysis of human brain fMRI subjects can research neuro-related diseases and explore the related rules of human brain
activity. In this paper, we proposed an algorithm framework to analyze the functional connectivity network of the whole brain and
to distinguish Alzheimer’s disease (AD), mild cognitive impairment (MCI), and cognitively normal (CN). In other studies, they
use algorithms to select features or extract abstract features, or even manually select features based on prior information. ,en, a
classifier is constructed to classify the selected features. We designed a concise algorithm framework that uses whole-brain
functional connectivity for classification without feature selection.,e algorithm framework is a two-hidden-layer neural network
based on extreme learning machine (ELM), which overcomes the instability of classical ELM in high-dimensional data scenarios.
We use this method to conduct experiments for AD,MCI, and CN data and perform 10-fold cross-validation.We found that it has
several advantages: (1) the proposed method has excellent classification accuracy with high speed. ,e classification accuracy of
AD vs. CN is 96.85%, and the accuracy of MCI vs. CN is 95.05%. ,eir AUC (area under curve) of ROC (receiver operating
characteristic curve) reached 0.9891 and 0.9888, respectively. ,eir sensitivities are 97.1% and 94.7%, and specificities are 96.3%
and 95.3%, respectively. (2) Compared with other studies, the proposed method is concise. Construction of a two-hidden-layer
neural network is to learn features of the whole brain for the diagnosis of AD andMCI, without the feature screening. It avoids the
negative effects of feature screening by algorithm or prior information. (3) ,e proposed method is suitable for small sample and
high-dimensional data. It meets the requirements of medical image analysis. In other studies, its classifiers usually deal with several
to dozens of feature dimensions. ,e proposed method deals with 4005 feature dimensions.

1. Introduction

Alzheimer’s disease is a neurodegenerative disease with
insidious onset and progressive development. Clinically,
full-scale dementia is characterized by memory impairment,
aphasia, apraxia, agnosia, impairment of visuospatial skills,
executive dysfunction, and personality and behavior
changes, which seriously affect patients’ daily life. According
to statistics [1], in most developed countries, about 50% of
AD patients have been diagnosed and treated. In developing
countries, less than 10% of AD patients are diagnosed and
treated. Clinical diagnosis of AD is usually made after the
onset of dementia symptoms, and most patients are already

in the middle and late stages of AD at this stage, and
treatment at this stage is often ineffective. Mild cognitive
impairment (MCI) is a small, measurable change in the
ability to think, but one who can still perform everyday
activities. ,is is a transitional stage between healthy elderly
people and AD [2]. About 15 to 20 percent of people over 65
years of age have MCI [3]. Compared with healthy elder
adults, people with MCI, especially those with memory
impairment, have a higher risk of developing AD or other
forms of dementia.,e review ofWard et al. [4] showed that
about 32% of MCI patients would develop AD within 5
years, while the annual conversion rate of the elderly with
normal cognitive function was only about 1%. Although
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MCI has a high risk of developing AD, if early detection and
timely intervention and treatment can be carried out, the
condition of MCI patients does not necessarily develop to
AD state. ,erefore, early detection, diagnosis, and treat-
ment of MCI can delay the occurrence of AD, which has
important clinical and social significance.

In 2004, Huang et al. [5] proposed a simple and efficient
single-hidden-layer feedforward neural network (SLFN)
algorithm. It is called extreme learning machine (ELM).
ELM randomly selects the input weights and hidden layer
bias of the network, and obtains the output weights through
analytical calculation, effectively overcoming the short-
comings of the traditional SLFN learning algorithm, and be
widely used in many fields such as disease diagnosis, traffic
sign recognition, image quality assessment, and so on [6–8].
ELM strives to solve the research problems in machine
learning fields such as regression, classification, clustering,
compression, and feature extraction under a single frame-
work. From the perspective of learning efficiency, ELM is
concise to implement, with extremely high learning speeds
and less human intervention. From the perspective of
theoretical studies, ELM can still maintain SLFN’s inter-
polation ability [7], general approximation ability [9], and
classification ability [10] even in the case of randomly
generating hidden layer neuron parameters. From the
perspective of structural risk minimization, the VC di-
mension (Vapnik–Chervonenkis dimension) of ELM de-
pends on the number of neurons in the hidden layer [11].
,e size of the VC dimension can be controlled by adjusting
the number of neurons in the hidden layer of ELM, tomake a
compromise between training error and model complexity,
and get the optimal generalization performance. ELM has
also been extended to a deep learning model [12, 13] and
made a lot of research results.

In recent years, machine learning techniques have also
been gradually applied to the analysis of brain image data for
the diagnosis of AD-like diseases. Wee et al. [14] proposed
an approach to extract cortical morphological abnormality
patterns from structural magnetic resonance imaging (MRI)
data to predict AD andMCI. It has an accuracy of 92.35% for
AD and 83.75% for MCI, with an area under the ROC curve
(AUC) of 0.9744 and 0.9233, respectively. Jie et al. [15]
proposed a connectivity-networks-based classification
framework to identify accurately the MCI patients from
cognitively normal (CN). It has an accuracy of 91.9%, with
an AUC of 0.94. Khazaee et al. [16] combined graph the-
oretical approaches with advanced machine learning
methods to study functional brain network alteration in
patients with AD. Using support vector machines (SVM) to
diagnose AD based on graph measure, with an accuracy of
97%. Nguyen et al. [17] proposed a voxel-wise discriminative
framework applied to multimeasure resting-state fMRI that
integrates hybrid MVPA and ELM for the automated dis-
crimination of AD and MCI from CN. It has achieved an
accuracy rate of 98.86% and 98.57% in the diagnosis of AD
and MCI. Bi X et al. [18] proposed 2 deep learning methods
of functional brain network classification. ,e convolutional
learning method learns the deep regional connectivity fea-
tures, while the recurrent learning method learns the deep

adjacent positional features. ,e ELM-boosted structure is
implemented to further improve the learning ability. Bi X
et al. [19] proposed an aggregator based on ELM that boosts
the aggregation ability and efficiency of graph convolution
without iterative tuning and designed a graph neural net-
work with ELM aggregator for the graph classification. Lama
et al. [20] proposed a diagnosis approach using graph
theory-based features from fMRI to discriminate AD, MCI,
and CN. It includes linear SVM, and regularized ELM. It has
achieved an accuracy rate of 90.93% and 98.91% in the
diagnosis of AD and MCI.

In the field of AD diagnosis with fMRI/MRI, features are
usually selected by manual or other methods and then
classified using SVM, ELM, etc. [14, 15, 17–20]. It is gen-
erally considered that the accuracy of classification can be
further improved through feature filtering or that classifi-
cation methods such as SVM and ELM are not suitable for
classification of high feature dimensional and small sample
size data. In this paper, we designed classification experi-
ments for AD and CN. It is confirmed that the ELMmethod
is suitable for classification with high feature dimension and
small sample size scenarios. And we found that ELM has the
advantages of high accuracy, fast computation, and strong
generalization ability in this scenario, and also found that it
has the disadvantage of unstable accuracy. We propose the
parallel ELM method, which inherits the advantages of the
ELM method while improving the stability and the accuracy
of the ELM method.

,e main contributions of this study are summarized as
follows:

(1) ,e proposed method is suitable for classification
with high feature dimension and small sample size
scenarios. And it avoids the instability of ELM
methods in this scenario and improves the accuracy.

(2) ,e proposed method has excellent classification
accuracy. ,e classification accuracy of AD vs. CN is
96.85%, and the accuracy of MCI vs. CN is 95.05%.
,eir AUC (area under curve) of ROC (receiver
operating characteristic curve) reached 0.9891 and
0.9888, respectively.

(3) Compared with other studies, the proposed method
is concise. Construction of a two-hidden-layer
neural network is to learn features of the whole brain
for the diagnosis of AD andMCI, without the feature
screening. It avoids the negative effects of feature
screening by algorithm or prior information.

2. Materials and Methods

2.1. Subjects. All fMRI data we used came from LONI’s
ADNI database, the ADNI2 project. ,e subjects were
cognitively normal (CN), mild cognitive impairment (MCI),
and Alzheimer’s disease (AD). 100 CN subjects, 100 MCI
subjects, and 100 AD subjects were obtained. It is important
to note that ADNI 2 subdivides MCI into EMCI and LMCI.
,e MCI data obtained in this paper included 50 EMCI
subjects and 50 LMCI subjects. ,e participants’ data
download address is https://adni.loni.usc.edu/. ,e age
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distribution of various subjects is shown in Figure 1. 
e
mean age and standard deviation of CN, MCI, and AD
subjects were 73.13± 6.49, 74.85± 5.94, and 75.07± 7.63,
respectively. 
e ratio of males to females is 1 :1 in all
categories.


e fMRI scan parameters we selected are as follows:
Field Strength� 3.0 tesla; Flip Angle� 80.0 degree; Matrix
X� 64.0 pixels; Matrix Y� 64.0 pixels; Mfg Model� Intera;
Pixel Spacing X� 3.3125mm; Pixel Spacing Y� 3.3125mm;
Pulse Sequence�GR; Slices� 6720.0; Slice 
ick-
ness� 3.312999963760376mm; TE� 30ms; and
TR� 3000ms;

2.2. Brain Functional Connectivity. Brain functional con-
nectivity network is a mathematical representation de�ned
by a set of nodes and edges [21]. 
ese nodes represent brain
regions on di�erent scales. 
e temporal correlations
(functional connectivity) between the fMRI time course of
these nodes form the edge of the brain’s functional network.

e smaller the size of a node, the greater the number of
nodes and edges.
e more complex the described pattern of
neural activity in the brain, the more di�cult it is to calculate
and analyze. Researchers often use templates to divide the
brain into regions or nodes. Automatic anatomical labeling
(AAL) [22] template is one of the most commonly used
templates. AAL divides the brain into 116 regions, including
90 regions of the cerebrum and 26 regions of the cerebellum.
In fMRI data, each region in the brain corresponds to a time
series. 
e connectivity between each pair of brain regions
can be represented by the correlation coe�cients of their
time series. 
e Pearson correlation coe�cient is one of the
most popular statistics for measuring the linear correlation
between two normally distributed variables. 
e Pearson
correlation coe�cient of two brain regions x and y is cal-
culated as follows:

rp �
cov(x, y)
σxσy

�
∑ni�1 xi − x( ) yi − y( )������������

∑ni�1 xi − x( )2
√ ������������

∑ni�1 yi − y( )2
√ , (1)

where x and y are time series corresponding to brain regions,
x � (x1, . . . , xn), y � (y1, . . . , yn). cov (x, y) is the covari-
ation of x and y. σx and σy are the standard deviations of x
and y. x and y are the mean values of x and y.


e feature measures adopted in this paper is the whole
cerebrum functional connectivity network. In other words,
the AAL template was used to extract the time course of 90
brain regions, and the Pearson correlation was calculated to
form the functional connectivity network.

2.3. Extreme Learning Machine. Extreme learning machines
(ELM) belong to single-hidden-layer feedforward neural
networks (SLFNs) and have the characteristics of single-
hidden-layer neural networks: 1. implement complex non-
linear mapping directly from the input layer and 2. can
provide appropriate classi�cation model for large category
data sets. Compared with other single-hidden-layer neural
network models, the speed of model training and classi�-
cation is faster. Huang and Babri et al. pointed out in article

[23] that the input layer weights and hidden layer bias values
of other SLFNS networks need to be iteratively adjusted to �t
the current training data, and in the case of a large number of
hidden layer nodes, such calculation will bring greater cal-
culation time consumption [24, 25]. At the same time, since
gradient descent has become an e�ective method to solve
SLFNs, this method not only limits the solving speed, but also
can easily fall into the local minimum from the calculation
principle of the calculation method. Aiming at the above
problems, Huang et al. [5] proposed the algorithm of extreme
learning machine, which transformed the iterative solution
method into the solution method of linear equations by
randomly specifying the weight and bias values of the input
layer, and �nally obtained the analytical solution of the
network. 
e proposed algorithm can be quickly solved on
the premise of ensuring the accuracy of calculation.

Extreme learning machine can be described as: given
N arbitrary samples Xi, ti{ }, Xi � [xi1, xi2, . . . , xin]T ∈
Rn, ti � [ti1, ti2, . . . , tim]T ∈ Rm. For a single-hidden-layer
neural network with L hidden-layer nodes, it can be
expressed as

∑
L

i�1
βig Wi ·Xj + bi( )oj, j � 1, . . . , N, (2)

where g (x) is the activation function. In our article, the
activation function used is the sigmoid function.
Wi � [wi,1, wi,2, . . . , wi,n]T is input weight， βi is output
weight, and bi is the bias of the ith hidden-layer element.
Wi ·Xj is the scalar product of Wi and Xj. 
e goal of
single-hidden-layer neural network learning is to minimize
the output error, can be represented as

∑
L

i�1
oj − tj � 0, j � 1, . . . , N. (3)


ere are βi, Wi, and bi, such that

∑
L

i�1
βig Wi ·Xj + bi( ) � tj, j � 1, . . . , N. (4)

It can be expressed in matrix form

Hβ � T, (5)
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Figure 1: Age distribution of subjects.
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where H is the output of the hidden-layer node, β is the
output weight, and T is the expected output.

H � W1, . . . , WL, b1, . . . , bL, X1, . . . , XL( 􏼁

�

g W1 · X1 + b1( 􏼁 · · · g WL · X1 + bL( 􏼁

⋮ · · · ⋮

g W1 · XN + b1( 􏼁 · · · g WL · XN + bL( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×L

,

β �

βT
1

⋮

βT
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×M

,

T �

TT
1

⋮

TT
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×M

.

(6)

In the ELM algorithm, Wi and bi are randomly deter-
mined, and the output matrix H of the hidden layer is
uniquely determined.,e training of the single-hidden-layer
neural network can be transformed into adding a linear
system, formula (5). And the output weight β can be de-
termined by the following formula:

􏽢β � H
†
T, (7)

where H† is the Moore–Penrose inverse of H, and the
solution norm of 􏽢β is minimal and unique. We solve for 􏽢β to
construct ELM.

Proposed ELM algorithm framework based on whole-
brain functional connectivity.

,e hyper parameters involved in the ELM model in-
clude input weight, bias, activation function, number of
input nodes, number of output nodes, and number of
hidden-layer nodes. ,e input weight and bias are randomly
generated. ,e number of input nodes is determined by the
characteristic dimension of the data to be analyzed. ,is
paper analyzes the features of the entire network of func-
tional connections throughout the cerebrum. Calculated
according to the functional connection network of 90 re-
gions in the AAL template, the data characteristic dimension
is 4005; that is, the number of input nodes is 4005. In hidden
layer, select the most commonly used sigmoid function as
the activation function.,e number of output nodes is equal
to the number of categories of sample data. For binary
classification, the number of output nodes is 2; for ternary
classification, the number of output nodes is 3, and so on.

Figure 2 depicts the entire process of the proposed al-
gorithm framework.

(1) ,e fMRI data of AD, MCI, and CN obtained from
ADNI were preprocessed to obtain the whole-brain
functional connections of all subjects.

(2) ,e functional connection vectors of 90 brain regions of
all subjects were extracted and constructed into a
4005×Nmatrix, whereN is the total number of subjects.

(3) Select a certain percentage subjects randomly from
all the categories as the test set, and the other subjects

serve as the training set.,e proportion of subjects of
each class in training set and test set is the same.

(4) Build ELM classifier with training set. Record
training results, training accuracy, and other output
information.

(5) ,e ELM classifier is used to classify and predict the
test set. Record test results, test accuracy, sensitivity,
specificity, etc.

(6) Perform the computation in a loop of step (3), (4),
and (5) until the average accuracy converges. Finally,
we get the average performance of the algorithm.

Since the input weights and bias in the ELM method are
generated randomly, the division of the training set and the
test set is also generated randomly. ,erefore, the test ac-
curacy varies randomly within a certain range. Formula (8)
was designed to ensure a reliable average performance of the
proposed method. ,e variable Loop is the number of cycles.
,e variable o is the fluctuation range of average accuracy.We
need a large enough value of Loop and an appropriate value of
o so that they satisfy formula (8). ,e precision of the average
accuracy is controlled by adjusting the value of o. ,e logic of
formula (8) is descripted Figure 3. Repeat Step (6) 2∗Loop
times to get a sequence with 2∗Loop accuracies. In this se-
quence, the absolute value of the difference between the
average accuracy of any continuous Loop accuracies should
be less than or equal to o. ,e value of o in the experiment is
0.005. Formula (9) shows the average accuracy.

􏽐
Loop+n−1
i�n Accuracyi

Loop
−

􏽐
Loop
i�n Accuracyi

Loop

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ o, n ∈ (2, 3, . . . , Loop + 1),

(8)

Accuracy �
􏽐

Loop
i�1 Accuracyi

Loop
. (9)

2.4. Parallel ELM Algorithm Framework. Because of the
randomness of ELMmethod, the classification accuracy of the
proposed ELM algorithm framework will also vary randomly.
In order to improve the accuracy and stability of ELM
classifier, we proposed a parallel ELM algorithm framework.

,e parallel ELM algorithm framework is a 2-hidden-
layer artificial neural network. It is constructed in the fol-
lowing ways. Firstly, a series of ELM classifiers are con-
structed using the training set and then validate all the ELM
classifiers by validation set and picks out all the ELM clas-
sifiers with the highest validation accuracy. We define these
classifiers as the optimal ELM classifiers. It should be noted
that these classifiers only have the optimal classification ac-
curacy on the verification set, not necessarily on the test set.
Finally, we combine all the optimal ELM classifiers into a 2-
hidden-layer artificial neural network. It is the target classifier
to be constructed by the parallel ELM algorithm framework.
It also inherits the advantages of ELM classifier and has the
ability of binary classification and multiclassification.

Steps of parallel ELM algorithm framework (Figure 4)
are as follows:
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(1) Randomly divide the data set into a training set and a
validation set in a speci�ed proportion. 
e pro-
portion of subjects in each category is the same in the
training and test sets.

(2) Build ELM classi�er with training set.
(3) Calculate the accuracy of ELM classi�er with vali-

dation set.
(4) Repeat step (1) to (3) until the convergence of the

average accuracy of ELM classi�cation is veri�ed.
Record all the ELM classi�ers with the highest

veri�cation accuracy, that is, the optimal ELM
classi�ers.

(5) Combine all the optimal ELM classi�ers into a 2-hid-
den-layer neural network. All the output weights of the
second hidden layer are 1. 
e formula in output node
is formula (10), where Ti is the output of the optimal
ELM classi�er, n is the number of optimal ELM clas-
si�ers, and �T is the output of parallel ELM classi�er.

�T � ∑
n
i�1 Ti
n

. (10)

AccuracyLoop AccuracyLoop+1 …… Accuracy2*LoopAccuracy1 Accuracy2 ……

The width of the sliding window is Loop.
calculate the average of the accuracy

within the window.

AccuracyLoop AccuracyLoop+1 …… Accuracy2*LoopAccuracy1 Accuracy2 ……

The window slides

AccuracyLoop AccuracyLoop+1 …… Accuracy2*LoopAccuracy1 Accuracy2 ……

The last position of the
sliding window

ELM classification
accuracy sequence

ELM classification
accuracy sequence

ELM classification
accuracy sequence

Figure 3: Verify the convergence of the average accuracy by sliding window.

... ... ...

Results of
Training:
accuracy
... 

Results of
Test:
accuracy,
sensitivity,
specificity
...

Training Set

Test Set

AD, MCI, CN fMRI Source files Functional connectivity
matrixes

Functional connectivity matrix
of 90 brain regions

ELM

(1) (2)

(3)

(4)

(5)

Figure 2: ELM algorithm framework.
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3. Experiments

All experiments in this paper are run on PC with Intel Core
i7-8700 @ 3.20GHz, NVIDIA GeForce RTX 2080 8GB,
16GBDDR4 3600MHz, 250GB SSD. Software environment
is Windows 10 64 bit operating system. 
e tools used for
development are MATLAB R2022b, DPARSF 5.0, and SPM
12.

We designed the experiments including data pre-
processing, the performance of ELM, and the performance
of parallel ELM methods. 
e work¥ow of the experiment is
shown in Figure 5.

Data preprocessing: using tools such as DPARSF and
SPM, the DICOM format �les downloaded from ADNI are
processed to brain functional connectivity matrixes.


e performance of ELM: it tests the ability of the ELM
method to diagnose AD in high feature dimensions. 
is
includes the e�ect of the number of hidden layer nodes on
the classi�cation accuracy, the generalization ability of the
ELM method, the distribution of the accuracy of the ELM
method, and the convergence speed of the average accuracy.


e performance of parallel ELM: it tests the classi�-
cation ability of parallel ELM methods for AD, MCI, and
CN.

3.1. Data Preprocessing. 
e data preprocessing tool se-
lected in this experiment is Data Processing Assistant for
RBF Advanced Edition (DPARSF 5.0 Advanced Edition;
https://rfmri.org/DPARSF) and Statistical Parametric
Mapping (SPM12; https://www.�l.ion.ucl.ac.uk/spm/
software/spm12/). 
e fMRI image data obtained on
ADNI were in the format of Digital Imaging and Com-
munications in Medicine (DICOM). It converts DICOM
format to Neuroimaging Informatics Technology Initiative
(NIFTI) format. 
e �rst 10 time points of each subject
were removed in order to remove the stage of unstable
brain activity during familiarizing with the MRI scanner
environment and noise at the beginning of data scanning.
Slice Timing and Head Motion correction were performed

for each subject, and EPI template was used for stan-
dardization. Band-pass �ltering was used to obtain signals
between 0.01 and 0.1Hz. After processing, the bounding
box of all subjects was [−90−126−72; 90 90 108], and the
Voxel size was [3 3 3]. We obtain 300 functional con-
nectivity matrices of 90∗90 (100 AD, 100 MCI, and 100
CN). Due to the symmetry of these matrices, the full
amount of features for each subject is 4005.

3.2. �e Performance of ELM. We will test the ability of the
ELM method to classify AD with CN in scenarios with high
feature dimension and small sample size. We will also focus
on the relevant characteristics of the method. 
e data set
used for each of the following experiments consists of 100
AD subjects and 100 CN subjects. 
ey are divided into a
training set and a test at a certain ratio. 
e ratio of AD to
CN was 1 :1 in both the training and test sets.

(1) 
e relationship between the number of hidden-
layer nodes and the accuracy of ELM classi�ers. 
e
number of hidden-layer nodes is an important hyper
parameter in the ELM method. It has a very close
relationship with the accuracy of the ELM classi�er. In
this experiment, the data set was randomly divided
into a training set and a test set, with a ratio of 180 : 20.

e number of hidden layer nodes is approximated
according to formula (11) with reference to the feature
dimensions of the subjects. 
e number of hidden
layer nodes was 64, 125, 250, 500, 1000, 2000, 4000,
8000, 16000, 32000, and 64000. 
e experiment is
repeated 1000 times for each number of hidden layer
nodes. 
e ELM classi�er is trained 10,000 times for
the whole experiment. Each time the ELM is trained,
the training and test sets are redivided randomly.

Nodes � 4000∗2n, n ∈ [−6, 3], n is integer. (11)

(2) Generalization ability of ELM methods in high
feature dimensionality scenarios. Generalization
ability refers to the ability of machine learning

Training Set

Validation Set

... ... ...

... ... ...

... ... ...

...

..

.
(5)

(4)

(3)

(2)

(1)

Dataset for
building Parallel
ELM Classifier

Parallel ELM Classifier

Figure 4: Steps of parallel ELM algorithm framework.
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algorithms to adapt to fresh samples. 
e number
of samples used is limited. In this experiment, the
training and test sets are divided in di�erent ratios
to describe approximately the generalization
ability of the ELM method. In particular, the e�ect
of using a small number of training sets is to
construct ELM classi�ers for prediction on a large
number of test sets. In this experiment, the ratios

of training and test sets are set as 1 : 9, 2 : 8, 3 : 7, 4 :
6, 5 : 5, 6 : 4, 7 : 3, 8 : 2, and 9 : 1. 
e number of
ELM hidden layer nodes is set to 16000.1000 ex-
periments are repeated for di�erent training and
test set ratios. 
e ELM classi�er is trained 9000
times throughout the experiment. Each time the
classi�er is trained, the training and test sets are
redivided.

Data Preparation

ELM Performance Parallel ELM

Obtaining Data:
Download fMRI data
of AD and CN from
ADNI

Data pre-processing
Processing fMRI with
DPARSF, SPM

Data Set:
Functional
connectivity of the
brain based on the
AAL template

Training
set

Training set

Training ELM
classifiers

The relationship
between the number
of hidden layer nodes

and the accuracy

Generalization ability
of ELM

Distribution of the
accuracy

The convergence
speed of the average

accuracy

Test ELM
classifiers

Test
set

Test set

Training
set

Training set

Training ELM
classifiers

Test ELM
classifiers

Optimal ELM
classifiers

Parallel ELM
classifier

Test Parallel
ELM classifier

validation
set

Test set

Test set

Figure 5: Flow of the experiment.
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(3) Distribution of the accuracy of the classi�ers con-
structed by the ELM method. 
e input weights of the
ELMmethod are randomly generated. In scenarios with
high-dimensional features, there is also randomness in
the accuracy of the ELM classi�er. 
e number of
hidden-layer nodes in the experiments is 16,000. 
e
ratio of the training set to the test set is 9 :1. 
ere are
two cases regarding the division of the training and test
sets. Each time the ELM is trained, the training set and
test set are divided randomly and the experiment is
repeated 10,000 times to obtain the distribution of the
ELM method accuracy. 
e training and test sets are
divided randomly at one time, and the ELM classi�er is
trained and tested 10,000 times repeatedly to obtain the
distribution of ELM method accuracy.

(4) 
e convergence speed of the average accuracy of ELM
methods. 
e accuracy of ELM methods is random.
Enough ELM classi�ers are trained to describe the
distribution of their accuracy rates. 
e convergence
speed of the average accuracy rate is tested according to
formula (8) and formula (9). 
e number of hidden-
layer nodes is 16,000.
e ratio of the number of subjects
in the training set to the number of subjects in the test
set is 9 :1. Each time the ELM classi�er is trained, the
training and test sets are redivided randomly. 
e
precision of the average accuracy o is set to 0.5%.

3.3. �e Performance of Parallel ELM. We will test the clas-
si�cation ability of the parallel ELMmethod in AD vs. CN and
MCI vs. CN. 
e data sets were divided into training set,
validation set, and test set with a ratio of 8 :1 :1.
e number of
subjects in each pool is 1 :1 for both categories. 
e test set is
kept constant in one parallel ELM experiment. 
e training
and validation sets are redivided randomly at each training of
the ELM classi�er. 
e number of hidden layer nodes is set to
16000. 
e parallel ELM method is validated according to 10-
fold cross-validation for 10 times. 
e corresponding ROC
curves are also plotted, and the AUC is calculated.

4. Results

In the experiment of AD and CN classi�cation, the rela-
tionship between the number of ELM hidden-layer nodes
and the accuracy is shown in Figure 6.

Each point in the �gure corresponds to the number of
hidden-layer nodes and to the results of training and testing
the ELM classi�er 1000 times. In total, 11,000 ELM classi�ers
are trained and tested. 
e vertical coordinate corresponds
to the accuracy or standard deviation. 
e horizontal co-
ordinate corresponds to the number of hidden layer nodes.

e accuracy is decreasing as the number of hidden-layer
nodes goes from 64 to 250. As the number of hidden-layer
nodes becomes more than 250, the accuracy rate gradually
increases, eventually reaching an accuracy rate of about
96.11%. It should be noted that when the number of hidden-
layer nodes is 64 and 125, the average training accuracy is
83.94% and 96.14%, respectively. When the number of
hidden layer nodes is 250 or more, the training accuracies
are 100% in all cases. 
e variance of the mean accuracy
decreases roughly with the number of hidden-layer nodes,
from 11.16% to 4.46%. 
e rate of increase in accuracy is
progressively slower, and the variance changes in a similar
way. Since the number of hidden-layer nodes increases at an
exponential rate, once the number of hidden-layer nodes
reaches a certain level, more hidden-layer nodes have little
meaningful e�ect on the improvement of the accuracy, and
instead bring more computational power consumption.
When the number of hidden-layer nodes is 16,000, the time
to train and test an ELM classi�er is about 0.2 seconds.


e generalization ability of the ELM method in the
classi�cation experiments of AD and CN is shown in
Figure 7.

Generalization ability refers to the ability of machine
learning methods to adapt to fresh samples. Due to the
limitation of the number of subjects, we tried to build the
ELM classi�er with fewer training samples and predict a
larger number of test samples. In this way, the generalization
ability of the ELM method is described approximately. Each
point in the �gure corresponds to the training and testing of
1000 ELM classi�ers. 
e corresponding accuracy is the
average correct rate of the 1000 ELM classi�ers as well as the
standard deviation. A total of 9000 ELM classi�ers are
trained and tested. 
e training accuracy of all classi�ers is
100%. When the ratio of the training set to the test set was 1 :
9, that is, the ELM classi�er is trained with 20 samples to
predict 180 samples, the accuracy was 69.42%. When the
ratio of the training set to the test set was 1 : 9, that is, the
ELM classi�er is trained with 20 samples to predict 180
samples, the accuracy was 69.42%. When the ELM classi�er
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Figure 6: Relationship between the number of hidden layer nodes
and the classi�cation accuracy in AD and CN.
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is trained with 100 samples to predict another 100 samples,
the accuracy reaches 89.55%. 
e accuracy of the ELM
classi�er increased monotonically as the proportion of the
training set increased.


e distribution of accuracy in the AD and CN classi-
�cation experiments is shown in Figure 8.


e horizontal coordinate corresponds to the accuracy of
the ELM classi�ers. 
e vertical coordinate corresponds to
the number of classi�ers with a certain accuracy as a pro-
portion of the total number of classi�ers (10,000). 
e
number in the bar chart is the number of ELM classi�ers
with that accuracy. In the experiments corresponding to
Figure 8(a), the training and test sets are randomly divided
in each training ELM. 
e accuracies are distributed be-
tween 65% and 100%, and the accuracy of 9408 ELM
classi�ers are greater than or equal to 90%. In the experi-
ments corresponding to Figure 8(b), the training and test
sets are kept constant. Using the same methods, parameters,
and data sets, we still found accuracies varying between 85%
and 100%. Compared to the previous experiments, it has a
more concentrated distribution.

In the classi�cation experiments of AD and CN, the
number of computations for the average accuracy of the
ELM method to converge is shown in Figure (9). 100 ex-
periments are performed with o� 0.5% and o� 0.25%, re-
spectively. o is the precision of the average accuracy and is
used in formula (8).
e horizontal coordinate is the number
of times a convergence experiment needs to be computed.

e vertical coordinate is the proportion that this result
occurred to the total number of experiments (100). For

example, there are 19 experiments where the number of
computations is in the range “151–200.” It accounted for
19% of the total number of experiments. Experiments with
more than 800 computations occurred 2 times. It should be
noted that, in order to avoid accidently ending the exper-
iment early or for too long, we have set the number of
computations in the program to be greater than 10 and less
than 1000. When o� 0.5%, the number of calculations is all
less than 1000. 
e average number of calculations is 248.51.

e number of computations resembles a Gaussian distri-
bution. According to formula (8) and formula (9), the av-
erage number of computations required for the average
accuracy to converge is 124.26.
e number of computations
increases substantially when o� 0.25%. 
ere are 33 ex-
periments where the number of computations is greater than
1000.


e experiment results of the AD and CN classi�cation
using the parallel ELM method are shown in Table 1. 
e
experiment performed a 10-fold cross-validation for 10
times. 
e training set, validation set, and test set are ran-
domly generated for each 10-fold cross-validation. In a 10-
fold cross-validation, 10 parallel ELM classi�ers need to be
trained. Test results are obtained on all subjects. Each row in
Table 1 represents a 10-fold cross-validation. 
e �rst col-
umn is the serial number. 
e second column is the number
of ELM classi�ers trained in one 10-fold cross-validation.

e third column shows the average test accuracy and
standard deviation for all ELM classi�ers.
e fourth column
is the worst test accuracy of these ELM classi�ers. 
e �fth
column is the number of optimal ELM classi�ers selected in
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Figure 8: 
e distribution of accuracy. (a) Randomly divide the training and test sets when training each ELM. (b) 
e training set and test
set are kept constant for training each ELM.
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one 10-fold cross-validation.,e sixth column is the average
test accuracy and standard deviation of these optimal ELM
classifiers. ,e seventh column is the worst test accuracy of
the optimal ELM classifiers. ,e eighth column is the
number of parallel ELM classifiers in one 10-fold cross-
validation. Each fold yields one parallel ELM classifier. ,e
ninth column is the average test accuracy and standard
deviation of the parallel ELM classifiers. ,e tenth column is
the worst accuracy of these classifications. For example, in
the first 10-fold cross-validation, a total of 2362 ELM
classifiers are trained. ,e average test accuracy of these
ELM classifiers was 95.50% with a standard deviation of
4.91%, and the worst test accuracy is 70.00%. From the 2362
ELM classifiers, 771 optimal ELM classifiers are selected.,e
average test accuracy of these classifiers is 95.82%, with a
standard deviation of 4.88% and a worst accuracy of 70%.
771 optimal classifiers are constructed for each of the 10
parallel ELM classifiers. ,e average accuracy of these
classifiers was 96.00%, with a standard deviation of 6.15%
and a worst test accuracy of 80%. It should be noted that the
training accuracy of all classifiers was 100%.

In Table 1, it can be found that the optimal ELM classifier
improved the accuracy by 0.25% on average and the worst
accuracy by 2.5% compared to the ELM classifier. Parallel
ELM classifiers improved accuracy by an average of 1.74%
and worst accuracy by 14.50% compared to ELM classifiers,
and the standard deviation of the average accuracy was
reduced by 0.77%. ,e time to train and test an ELM
classifier is about 0.2 seconds. ,e average time to train and
test a parallel ELM classifier is less than 1 minute. ,e
parallel ELMmethod inherits the speed of the ELMmethod,
while offering higher accuracy and stability. Figure 10(a)
shows the distribution of accuracy for the parallel ELM
method. ,e data generated from the parallel ELM exper-
iments allow to plot 10 ROC curves, as shown in
Figure 11(a). ,e AUC of the 10 ROC curves ranged from
0.9799 to 0.9954. ,e mean value of the AUC is 0.9891. Still
based on these data, we calculate a sensitivity of 97.1% and a
specificity of 96.3% in the diagnosis of MCI.

,e experiment results for MCI and CN classification are
shown in Table 2. ,e format of Table 2 is the same as that of

Table 1. We can find that 23515 ELM classifiers are trained
and tested in the experiment. ,e average accuracy is
94.12%. ,e standard deviation is 5.35%. ,e average ac-
curacy of the parallel ELM classifiers is 0.72% higher than
that of ELM, the standard deviation is 0.28% lower, and the
worst accuracy is 12% higher. It is worth noting that the
average accuracy of the optimal ELM classifier is also lower
than the average accuracy of the ELM classifier. ,e parallel
classifiers constructed using these optimal ELM classifiers
however have higher accuracy rates. Figure 10(b) shows the
distribution of accuracy for parallel ELM methods.

,e data generated from the parallel ELM experiments
allowed 10 ROC curves to be plotted as shown in
Figure 11(b). ,e AUC of the 10 ROC curves ranged from
0.9777 to 0.9960. ,e mean value of the AUC was 0.9888.
Still based on these data, we calculate a sensitivity of 94.7%
and a specificity of 95.3% in the diagnosis of MCI.

5. Discussion

From the results of the above experiments, we can find that
the ELM method is effective. It can be used to classify AD
with CN for high feature dimension and small sample size
scenario. It has a high accuracy rate and better generalization
ability. However, it also has some problems.

,e classification accuracy of the ELM method is un-
stable. Figure 8(a) shows that in the experiments with AD
and CN classification, the worst correct rate was 65% and
the best was 100%. In Figure 8(b), even when using the
same training set, test set, and ELM parameters, the
accuracy of ELM still varied between 80% and 100%. In
the process of ELM classifier training [26], a unique ELM
classifier can be constructed as long as the input weights
are randomly determined. ,is indicates that the input
weights are good or bad in determining the accuracy of
the classifier. ,e input weights determine the weights
assigned to each feature. ,e higher the weight, the more
useful it is, and the lower the weight, the less useful it is.
We found in our experiments that classifiers with the
same accuracy predicted different incorrect subjects.
,is indicates that different classifiers make use of

Table 1: 10 times 10-fold cross-validation results for AD and CN classification.

No. of
experiments

ELM classifiers Optimal ELM classifiers Parallel ELM classifiers

Amount Mean
Accuracy± STD

Worst
accuracy

(%)
Amount Mean

Accuracy± STD

Worst
accuracy

(%)
Amount Mean

accuracy± STD

Worst
accuracy

(%)
1 2362 95.50%± 4.91% 70.00 771 95.82%± 4.88% 70.00 10 96.00%± 6.15% 80.00
2 3024 95.60%± 4.75% 75.00 1029 95.68%± 4.62% 75.00 10 96.50%± 3.37% 90.00
3 2090 94.97%± 4.40% 75.00 662 95.38%± 4.11% 80.00 10 97.00%± 3.50% 90.00
4 3248 94.01%± 5.15% 70.00 1052 94.14%± 5.00% 80.00 10 96.50%± 4.74% 85.00
5 2434 96.86%± 4.36% 75.00 765 97.18%± 3.96% 75.00 10 98.50%± 2.42% 95.00
6 1748 95.05%± 4.67% 80.00 545 95.41%± 4.41% 80.00 10 97.50%± 3.54% 90.00
7 2680 95.17%± 4.31% 80.00 855 95.26%± 4.30% 80.00 10 97.50%± 3.54% 90.00
8 2110 94.45%± 4.74% 75.00 702 94.60%± 4.59% 75.00 10 96.00%± 4.59% 90.00
9 1580 95.08%± 4.45% 75.00 558 95.21%± 4.17% 80.00 10 96.50%± 2.42% 95.00
10 2558 94.42%± 5.00% 75.00 846 94.77%± 4.80% 80.00 10 96.50%± 4.74% 90.00
Mean 2383.4 95.11%± 4.67% 75.00 778.5 95.35%±4.49% 77.50 10 96.85%± 3.90% 89.50
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features di�erently. 
e ELM classi�er’s use of features is
partial.

According to Table 1 and Table 2, it can be found that the
accuracy of the optimal ELM classi�er is lower than that of the
parallel ELM classi�er.
e parallel ELM classi�ers with higher
accuracy are formed from these lower accuracy optimal ELM
classi�ers. 
is shows that the use of features by these optimal
ELM classi�ers is partial and varies from one to another.

erefore, the parallel ELM classi�er can combine the learning
ability of each ELM classi�er to achieve higher accuracy.

Comparing the distribution of accuracy between ELM
methods and parallel ELM methods is according to
Figure 8(a) and Figure 10(a). 54% of the classi�ers trained by
the parallel ELM method achieved an accuracy of 100%, and
the worst classi�cation accuracy is 80%. 40.57% of the
classi�ers trained by the ELM method achieved an accuracy
of 100%, and the worst classi�cation accuracy is 65%. 
is
indicates that the parallel classi�er approach has higher
accuracy and stability.

We found seven references on the diagnosis (classi�-
cation) of AD and MCI in recent years for comparison, as
shown in Table 3.

All of these references used subjects from ADNI. Five of
the references used less than 100 subjects. 2 references used
354 subjects. We used 300 subjects. A su�cient number of
subjects is more conducive to learning the patterns of the
features, but may also negatively a�ect the accuracy. We
used 300 subjects precisely to test the performance of the
parallel ELM method better.


e references all use features of a network structure.
Most used is the brain functional connectivity network (FC).
Some references also use a combination of other features.
We have adopted FC as features that are more comparable to
these references.


e references all �lter the features. 
e main purpose
of this is usually to increase the speed and accuracy. 
e
high dimensionality of the features has a signi�cant im-
pact on the classi�cation. As far as we know, it is rare to
�nd a scenario with high feature dimensionality where all
features are used for classi�cation. Feature �ltering is
usually based on a priori knowledge or presuppositions.

is may result in some useful features being screened out.
Our proposed method uses all features to avoid this
problem.
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Figure 10: Distribution of accuracy of parallel ELM methods in the classi�cation. (a) AD vs. CN; (b) MCI vs. CN.
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Figure 11: ROC and AUC for classi�cation by the parallel ELM method. (a) AD vs. CN; (b) MCI vs. CN.
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SVM and ELM are two commonly used classifiers. ,ree
references [14, 15, 20] used SVM as a classifier and four
[17–20] used ELM as a classifier. One of them [19] used a
deep neural network involve ELM. Our method is the most
concise. ,is allows our method to inherit well the ad-
vantages of ELM, such as fast computation and high ac-
curacy. Training a parallel ELM classifier takes less than 1
minute on average.

,e data sets (including the number) used for these
experiments differ. ,eir correct rates are just used as a
reference for method comparison. Our method achieved a
diagnostic accuracy of 96.85% for AD and 95.05% for
MCI. ,e AUC values reached 0.9891 and 0.9888,
respectively.

6. Conclusion

Based on the above work, we consider that (1) the proposed
method framework is an effective AD/MCI classification

method. (2) ,e proposed method framework is relatively
concise and does not need other methods for feature
screening. (3) ,e proposed method is suitable for small
sample and high-dimensional data. It meets the require-
ments of medical image analysis. (4) ,e proposed method
framework improves the accuracy and stability of ELM
classifier. (5) ,e proposed method has a high speed.

6.1. Future Work. ELM is suitable for scenarios with small
sample amount and high feature dimensions. In this study,
only brain functional connectivity was used as a feature
measure. It is worth exploring the effects of other fMRI
feature measures using the ELM approach. ELM has the
ability to process the features of the whole brain, and it is
worth using ELMmethod as a tool for fMRI feature analysis
to search for biomarkers and explore the rules of human
brain. ,e ELM method has the capability of multiclass
classification and regressions, which makes it possible to

Table 2: 10 times 10-fold cross-validation results for MCI and CN classification.

No. of
experiments

ELM classifiers Optimal ELM classifiers Parallel ELM classifiers

Amount Mean
accuracy± STD

Worst
accuracy

(%)
Amount Mean

Accuracy± STD

Worst
accuracy

(%)
Amount Mean

accuracy± STD

Worst
accuracy

(%)
1 2641 94.69%± 4.97% 75.00 717 94.89%± 5.01% 75.00 10 94.5%± 4.97% 85.00
2 2164 91.23%± 6.37% 70.00 631 91.09%± 6.18% 75.00 10 95.00%± 5.27% 85.00
3 1924 93.89%± 5.92% 75.00 562 93.38%± 5.97% 75.00 10 95.00%± 5.27% 85.00
4 2096 94.60%± 5.01% 70.00 634 94.58%± 4.85% 75.00 10 94.50%± 4.97% 85.00
5 1984 94.03%± 5.31% 75.00 578 93.61%± 5.62% 75.00 10 95.50%± 4.97% 85.00
6 2016 95.17%± 5.08% 75.00 556 94.62%± 5.31% 75.00 10 96.00%± 3.94% 90.00
7 3098 94.86%± 4.78% 80.00 853 94.63%± 4.89% 80.00 10 95.00%± 4.74% 85.00
8 2710 92.05%± 6.07% 70.00 855 91.50%± 5.96% 80.00 10 94.50%± 5.99% 85.00
9 2872 96.01%± 4.80% 70.00 797 96.22%± 4.90% 70.00 10 96.00%± 4.59% 85.00
10 2010 94.64%± 5.20% 75.00 595 94.44%± 5.16% 75.00 10 94.50%± 5.99% 85.00
Mean 2351.5 94.12%± 5.35% 73.50 677.8 93.90%±5.39% 75.50 10 95.05%± 5.07% 85.50

Table 3: Comparison of classification performances with references.

Reference
Data set
AD :MCI:

CN
Feature measures Feature selection Classifier

Accuracy (%) AUC
AD vs.
CN

MCI vs.
CN

AD vs.
CN

MCI vs.
CN

[14] -:25 : 25
Pearson correlation of

regional cortical
thickness

t-test; mRMR; SVM-RFE; SVM 92.35 84 0.9744 0.9233

[15] -:12 : 25 FC t-test; SVM-RFE; SVM N/A 91.9 N/A 0.94

[27] 25:-:36 FC Random neural network
cluster

Elman neural
network 92.31 N/A N/A N/A

[17] 34 : 31 : 31 ReHo; FC SVM-RFE; LASSO; t-test ELM 98.86 98.57 N/A N/A

[18] 118 :118 :
118 FC

Recurrent learning method;
convolutional learning

method;
ELM N/A N/A 0.913 0.824

[19] 118 :118 :
118 FC Select features by threshold GNEA N/A N/A 0.813 0.703

[20] 31 : 31 : 31 FC, graph-embedding SVM-RFE; LASSO; FSASL LSVM 90.63 97.8 N/A N/A
RELM 93.86 98.91 N/A N/A

Proposed
method

100:100:
100 FC None Parallel ELM 96.85 95.05 0.9891 0.9888
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design a method to fit the development process from CN to
AD.

Data Availability

All fMRI data we used came from LONI’s ADNI database,
the ADNI2 project. ,e subjects were cognitively normal
(CN), had mild cognitive impairment (MCI), and had
Alzheimer’s disease (AD). ,e participants’ data download
address is https://adni.loni.usc.edu/. ,e fMRI scan pa-
rameters we selected are as follows: Field Strength� 3.0 tesla;
Flip Angle� 80.0 degree; Matrix X� 64.0 pixels; Matrix
Y� 64.0 pixels; Mfg Model� Intera; Pixel Spacing
X� 3.3125mm; Pixel Spacing Y� 3.3125mm; Pulse
Sequence�GR; Slices� 6720.0; Slice ,ick-
ness� 3.312999963760376mm; TE� 30ms; and
TR� 3000ms;
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